
Introduction to Computer Science Fundamentals of Programming

Fundamentals of programming 
Table of Contents

Data type.......................................................................1
Basic concepts.............................................................2

Comments................................................................3
Variable declaration..............................................3
Constant declaration............................................3
Assignment...............................................................3

Selection........................................................................4
Iteration..........................................................................4

Definite iteration.................................................4
Indefinite  check at start– ................................5
Indefinite  check at end– .................................5

Nested selection and nested iteration 
structures..................................................................6

Subroutines, procedure, functions......................6
Meaningful identifier names..................................6
Arithmetic......................................................................7
Relational operations..............................................7

Boolean operations.............................................8
Constants and variables....................................8
String-handling operations..............................9
Random numbers.............................................10

Exception handling.............................................10
Subroutine parameters and return values. 11
Local and global variables.............................11
Stack frames and subroutines......................12

Recursive techniques.........................................13
Programming paradigms.................................14

Procedural programming.............................14
Object-oriented programming..................15

Access modifiers..........................................15
Inheritance......................................................16
Composition and aggregation...............17
Object-oriented design.............................17
UML...................................................................18

These notes are about some of the fundamentals of programming. They apply 

to all languages, but the details vary between different languages. They will 

make little sense by themselves. They need to be studied alongside writing and 

testing real programs in a language such as C, Java, Javacript or Python. 

There are no tests or exercises here. It should be studied alongside one or more 

real languages, which should include programming exercises.

Data type
Programs handle data, with different types. The common types are:

 • integer  whole numbers, like 35 and -7–

 • real/float  numbers with decimal parts, like 4.6 or – 3.2. In mathematics these 

are called real numbers. In programming they are sometimes called floating 

point types, or just floats. That comes from how these values are represented in 

binary.

 • boolean  these are true or false values–

Page 1 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

 • character  examples of characters are alphabetic letters like a-z and A-Z, –

digits like 3  and 9 , punctuation like !  and so on. A space character   is just ‘ ’ ’ ’ ‘ ’ ‘ ‘

another character. Check the difference between a variable name and a 

character value. For example

x= f’ ’

makes the variable named x to have the value character f . In many programming ‘ ’
languages a character is enclosed in quotes, like f . Check we usually need to include other‘ ’  
scripts, to handle characters like  and  and .  Ω Ῠ π

 • string  a string of characters, like Hello boys!– ‘ ’

 • date/time 

 • pointer/reference  Data values are stored in memory. A pointer or reference is 

a way to find that value in memory  a pointer points  to the value. In some – ‘ ’

languages such as C , a pointer is simply the address in RAM of the value - ( )

these are called raw pointers. Java and Python do not use raw pointers, because 

they are a common source of bugs.

 • records - A record is a type which has several parts, called fields or attributes. 

For example, in a payroll application, for each employee we would need to 

manage their name, payroll number, their department, and several other fields. 

We might do this by defining a record type with these fields. Then we would 

make variables of this type, and assign to their name, payroll number and so 

on.

Pascal has a type called record to match this. C has a struct which is equivalent. 

Java and Python and JavaScript have objects, which are similar, but not 

identical, since they also have methods - code to do things.

• arrays  - An array is a simple type of data structure  a way of referring to a –

set of data values in one thing. An array can be thought of as a set of 

numbered boxes. Then we can refer to the first box, the second box, the ninth 

box and so on. The box number is called the index. The values in an array are 

the elements of the array, and the index values often start at 0, not 1. The index 

is in [square brackets].  

user-defined data types This means a type which is not built-into the language, 

but which is defined in a program. 

In Python and Java and JavaScript,  classes are user-defined type.

Page 2 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

Basic concepts
A computer program is, mostly, a set of instructions which the computer 

executes. These instructions are usually called statements. There are different 

types of statements. Programs are combinations of

sequence one statement after another, in correct order( )

selection conditional statements or 'ifs'( )

iteration loops( )

Comments

A comment is text in a program which the compiler or interpreter will ignore.

Comments are marked in different ways in different language. In Java and C 

and C++, a line comment starts // and runs to the end of the line. In Python a 

comment starts #. In html comments starts <!-- and end -->

Comments are used to

• Say the filename, date written, version number, author name, copyright information and so on

• Explain the code  say what a variable represents, what the purpose is, how to use it, why this –

solution is used.

Variable declaration

In many languages, a variable must be declared before it is used. This often 

includes saying what the data type of the variable is. For example in C:

int fileCount;
declares the variable named fileCount, and says it is an integer data type. 

Why do some languages require this? Because

• It is easier for a human to read and understand code if it starts with a list of variables used

• It enables the interpreter or compiler to check for typos in variables because mistyped variables(  

will not have been declared, and the compiler can identify these)

• The type allows the interpreter or compiler to check for some errors. For example trying to 

multiply strings must be a mistake.   

Constant declaration

A constant is a value which does not change. A constant is usually a  literal, 

such as 3 or 7.2. You cannot change 3.

But a constant might also be given a name. For example in JavaScript we can 

say

Page 3 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

const PI = 3.1416;

Assignment

An assignment statement gives assigns  a value to a variable. For example ( )

y=x+2*(z+3)

When this is executed, the computer calculates the value of x+2* z+3 , and assigns that ( )
value to y

Selection
This is often called an if statement.

The computer will take different actions execute different code  for different ( )

data values. For example

if y<2*z
  {
  a=1
  b=2
  }
else
  {
  a=4
  b=5
  }

If y is less than 2*z, a=1 and b=2 will be executed, and if not, a=4 and b=5.  

Usually the condition depends on other computations, so we do not know, 

when we write the program, which block will be executed.

This code is indented. That is, the if block and the else block are set in from the 

left edge. This is to make the structure clearer. In Python it is essential. 

Another kind of selection is the ternary operator. For example 

y = z<5 ? 4*z : 5*z;

Then if z is less than 5, 4z is assigned to y. Otherwise, 5z is assigned to y. We 

can think of it as - is z<5? If so, y is 4z, and if not, its 5z.

Iteration
Iteration means repeating code. Iteration is often called looping. There are 

different forms:

Page 4 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

Definite iteration

This is when we can see, when we write the program,  how many times it will 

repeat, like

for n=1 to 10
  .. do something
next

Indefinite – check at start

This is when we repeat code while some condition is true, and we check the 

condition at the loop start.

For example suppose we want to add up 1 + 2 + 3 +4.. until the total is 10 or 

more:

total=0
n=0
while total<10:
total=total+n
n=n+1

prin
After the loop, n is 5. It repeats the loop 4 times. At the end of the last time 

through, n becomes 5. But the total then is 10, so the condition total<10 is 

false, and the looping finishes.

Because we check at the start, we might get zero repeats. For example

total=0
n=0
while total>0:
total=total+n
n=n+1

Here the first time in, total>0 is false. So we do not repeat at all, and n does not 

change from 0.

Indefinite – check at end 

In many languages this is done by do..while or repeat..until.

total=0
n=0
do
total=total+n

Page 5 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

n=n+1
while total>10:

We do not reach the condition to the end of the loop. This means we execute 

the loop body at least once.

Nested selection and nested iteration structures

The statements in the body of a loop or conditional can be any type, including 

loops and conditionals. So we often have loops nested inside loops.

For example in a chess game we might need to do something for every square 

on the board. So we go through every row, and for each one, go through each 

column:

for row in range(1,9):
for column in range(1,9):

print("Row = ",row,", column = ", column)

Subroutines, procedure, functions
Program code is usually split into small blocks, called in different languages 

subroutines, procedures, functions or methods. 

A subroutine can be called from other code. This means the path of execution 

switches to the subroutine, flows through it, then returns to the instruction 

following the call.

Data can be passed into a subroutine through parameters, and passed back 

through a return instruction.

One subroutine can call other subroutines from within it.

Execution starts in one block, and this calls other subroutines, which can call 

others. In this way code with many thousands of lines of code can be divided 

into subroutines each with twenty lines or less.

For example:

def average(x,y): # define a function named average
result=(x+y)/2 # calculation
return result # send back the result

x=4 # execution starts here
y=8
a=average(x,y) # call the function and assign to a

Page 6 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

print(a) 

Meaningful identifier names
Identifiers are the names of variables, functions and other things which can be 

chosen by the programmer the rest are ( reserved words .)

These should be chosen to say what the thing represents. For example, a 

function to calculate tax should be called findTax  and not func23. A function –

which deletes a file should be called something like deleteFile  and not df. A –

variable representing the current date should be called currentDate. The less 

imaginative you are, the better.

Why? Because it makes the code more readable making more sense to a (

human more easily .)

In turn that makes the code easier to write, bugs easier to find, makes it easier 

for the author or other programmers to understand, fix and extend the code, 

and reduces the need for comments.  

Arithmetic
Programming languages offer the ability to do arithmetic. Addition subtraction 

and multiplication usually work as expected, with * the common symbol for 

multiplication.

A digit is a single symbol. The digits in base 10 are 0 to 9. 317 is one number 

with three digits. 

There are usually two forms of division. Real or floating point division works as 

expected, so 3.0/4.0 is 0.75. Integer division gives the quotient only and ignores 

the remainder. For example 7 divided by 2 is 3 remainder 1, and we just get the 

3 and lose the 1. There is a way to get the remainder, often written 7 % 2.

Exponentiation means raising a number to some power. This is often **. So for 

example 2**3 = 2 X 2 X 2 = 8.

Languages usually follow BODMAS. So 2+3*4 is 14, not 20. We use brackets to 

change the order. So 2+3 *4 is 20( )

Rounding means reducing the number of decimal places in a value, maybe to 

zero. So if we round 23.41 to 1 decimal place, we get 23.4. If the digit lost is 5 

or more, we round up. So if we round 23.48, we get 23.5.

Truncation means just cutting off a number. So if we truncate 23.4999 to one 

decimal place, we get 23.4 

Page 7 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

Relational operations

These compare two values, like x > y for x is greater than y, and give a boolean, 

true or false, result

In most languages we have > greater than, < less than, >= greater than or 

equal to, <= less than or equal to.

Not equal to is usually !=

Testing for equality needs care. A = is an assignment, so we usually use == to 

test if two numbers are equal.

x=4
y=3+1
if (x==y):
print("Correct")

Boolean operations

One boolean operator is AND. So x AND y is true only if x is true AND y is true.

Boolean operators work with boolean value and produce a boolean value  true–  

or false.

OR means either. So x OR y is true if either x or y is true, or both.

NOT is reverse. Not x is true if x is false, and vice versa.

XOR is either but not both. So x XOR y is true if x is true and y false, or x is false 

and y true. It is the same as not equal to, with boolean values

x=4
y=6
print(x==4 and y==6) # true
print(x==2 or y==6) # true
print(not(x==3)) # true
print(x==4 != y==6) # same as xor - no actual xor in 
Python

 See the section about logic in mathematics fundamentals.

Constants and variables

A variable can change in value during execution, while a constant cannot.

In C we can have named constants like this:

#define LOOP_LIMIT 1000
..
count=0;
while (count<LOOP_LIMIT)
{

Page 8 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

..
}

Why is this better than simply saying

while (count< 1000)

?

Because

• It is more readable

• We can change the loop limit just in one place. But if we have used 1000 in many places through 

the program, we would need to search and replace that every time 

String-handling operations

A string is a sequence of characters. For example black cat  is a sequence of “ ”

nine characters, one of them being the space character.

Characters are part of a character set  examples are – ASCII and Unicode. Each 

character in a set has a unique identifier integer, called its code point or 

character code. For example in ASCII the character code of A  is 65, B  is 66, “ ” “ ”

C  is 67, a  is 96 and so on. The code of 0  is 48. 0  is a character, while 0 “ ” “ ” “ ” “ ”

is a number. 

Languages usually have a collection of facilities related to strings, such as: 

length  find the length of a string eg abcd  has length 4– “ ”

position  find one string inside another eg 123xx67  contains xx  starting at– “ ” “ ”  

index 3 index 0 is the first position  ( )

substring  get part of a string eg 012cat67  starting at 3, length 3 is cat– “ ” “ ”

concatenation  join two strings eg black  + cat  is black cat– “ “ “ ” “ ”

For example

myString="test string"
print (len(myString)) # 11
print( myString.find("rin") ) # 7
print( myString[1:4]) # est
print("one"+"two") # onetwo

We would also expect to be able to convert between characters, their codes, 

string and integer, string and float, string and date:

print( ord("A")) # 65 char code of A
print( chr(66)) # B character with code 66

x=213
s=str(x) # convert int to string

Page 9 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

s="456"
x=int(s) # string to int

x=3.4
s=str(x) # float to string 

s="45.6"
x=float(s) # string to float

import datetime # this is Python

x = datetime.datetime.now()
print(x, type(x)) # x is type datetime
s=str(x) # date to string

Random numbers

Random numbers are often useful. For example, we might want to test some 

code that sorts numbers into order, and we might want to test it with 1000 

numbers. But typing in 1000 values is impractical. Better to generate those 

numbers by code with a random number generator.

Languages usually have features to generate random integers and random 

floats:

import random

for count in range(0,10): # 10 times..
n=random.randrange(100) # random int 0 to99
print(n)

for count in range(0,10): # 10 times..
n=random.random() # random float between 0 and 1.0
print(n)

  

Exception handling
Examples of exceptions are:

• An application attempts to read a data file maybe the application is a game and the file is a (

saved game . But the file cannot be found  someone deleted it) –

• The user inputs invalid data  maybe a number with two decimal points like 3.4.56–

• The application tries to load data over the web  maybe from the cloud  but the network – –

connection is lost, because someone unplugged a router

An exception is

• Something that happens  an event–

Page 10 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

• Outside the program

• Which is unusual, non-standard, exceptional

• Which affects the program, in a negative way

Some exceptions can be handled. For example if the user inputs invalid data, 

we can tell them and ask them to try again. Others cannot  if for example –

computer memory develops a fault.

When an exception happens in a function, the program designers have three 

possible options -

• handle the exception  fix it–

• pass the exception back to the function which called it

• give up and terminate the program 

Some languages have a try..catch statement:

try
{
.. code which may result in an exception
}
catch
{
.. code to run if the exception happens. The code in the 
try clause is rolled back – as if it never happened
}

Subroutine parameters and return values
Data values are passed into a subroutine through parameters  sometimes –

called arguments. Values are passed out of a subroutine back to the code that (

called the subroutine  as a ) return value.

A subroutine can only return one value. If we need to return several values, they 

need to be put into a data structure  maybe a record, an object or an array –

We use subroutines because:

• They make code more readable

• A single copy of the code can be called many times in the program

• They can be tested in isolation

• They can be re-used in libraries code collections which can be used in many applications  ( )

Local and global variables

A local variable has a value which can only be used within a subroutine.

Page 11 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

A global variable can be used anywhere in a program.

Usually local variables only begin when execution of the subroutine starts and 

they disappear when subroutine execution ends. This is their lifetime.   

Why do we use local variables? Because we do not need need to worry that a 

variable name used in one subroutine might clash with a variable with the same 

name in another subroutine. Clash  means accidentally altering the value in a ‘ ’

bug. Real programs contain thousands of variables, but we do not need to 

remember them all if they are local. 

Global variables are also discussed in the section on object-oriented 

programming. 

Stack frames and subroutines

How does parameter passing and returns and local variables actually work? 

The runtime maintains a stack in memory. Read about stacks under data 

structures.

For example:

1 def average(x,y):
2 answer=(x+y)/2
3 return answer
4
5 val1=int(input("Enter a number"))
6 val2=int(input("enter a number"))
7 av=average(val1, val2)
8 print(av) 

When execution reaches line 7, there is a function call. Here the runtime:

• pushes the return address on the stack line 7( )

• pushes parameters val1 and val2  on the stack( )

• switches execution to line 1 subroutine start( )

• at line 1, values for x and y are popped off the stack val1 and val2( )

• at line 2, a local variable is reached. This is set up on the stack

• also at line 2 the assignment is executed, with the result stored in answer , on the stack‘ ’

• at line 3 we have a return. This happens: 

1. The local variable is popped off the stack. the lifetime of local variable 'answer' ends( )

2. The return value answer  is pushed( )

3. The return address  line 7  is popped( )

Page 12 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

4. Control switches to that return address

• At line 7, the return value is popped off the stack and assigned to variable av

• Execution proceeds at line 8 as usual

This is an outline. The details depend on the language used, and whether it is 

native code or interpreted source code

Why a stack frame? Because we need to use a block of data, not just pushing 

and popping a single value.

Why use a stack? Why not just store values somewhere in memory or in 

processor registers? Because we need to one subroutine to be able to call 

another, and that to call another, and so on, and for returns to always go back 

to where they came from, not just to one place. Using a stack means this will 

work.

Each call uses memory for the stack. It is possible that so many frames are 

pushed on the stack that the runtime runs out of memory available for the 

stack. This is called stack overflow. See the section on recursion.

Recursive techniques
A recursive subroutine is one which sometimes calls itself. We can also have 

recursive functions, procedures, methods and so on. It is a general 

programming technique.

For example, suppose we want to calculate the Fibonacci sequence:

1,1,2,3,5,8,13..

The first two numbers are 1, then we add the last two to get the next. 

In pseudo-code this is

fib(n)
  if n=1 or 2 return 1
  else return fib(n-1)+fib(n-2)

Recursive code is usually like

if .. something .. ( )
here is the answer immediately base case( )

else
recursive call

This means a call to this might mean a recursive call, so another recursive call, 

but eventually the if triggers, and we get the base case. Then the recursion 

unwinds.

Page 13 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

If we do not, we get an endless recursion. These function calls use the stack, 

like they all do, so eventually we get a stack overflow. 

Recursion is often the easiest way to write code. For example, suppose we want 

a function to delete everything in some folder. The problem is the folder might 

contain folders, and everything in them must be deleted. The solution in 

pseudocode is

function deleteAllIn(someFolder)
for every thing in someFolder

if it is a file, delete it
I if it is a folder 

deleteAllIn(subfolder)
delete subFolder  

Programming paradigms
A programming paradigm is an approach to writing programs, using a set of 

ideas and techniques. Three commonly used paradigms at present are 

• procedural programming

• object-oriented and 

• functional programming.

Different languages handle these paradigms to different extents, and in slightly 

different ways. Some languages, such as Javascript and Python, can be used in 

all three paradigms. C is entirely procedural, and Java is primarily object-

oriented. Each paradigm has advantages and disadvantages.

Procedural programming

In procedural programming code is organised into sections known as sub-

routines, functions or procedures.  Execution starts somewhere in C and C++ (

and Java, at a section named main . This initial code usually contains)  calls to 

other sub-routines, which can call others in turn. When a sub-routine ends, 

control returns to the statement after the call. When main ends, the program 

ends.

Procedural programming reflects a top-down approach to problem-solving. We 

start with the overall problem, and split it into  parts. These sub-problems are 

smaller and easier. They can be broken down in turn into smaller problems. 

For example the task might be a supermarket website for delivered purchases:

Page 14 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

Supermarket website

Register new customer Edit customer details Place order

Login Edit profile Logout Login in Book 
delivery

Place 
order

Pay Logout

Each of these tasks can be split further. For example, logging in requires

get customer ID and password
check in database
accept or reject

This would be in a client-server system. The user interface would be in web 

pages, so html and CSS and Javascript. Server-side code might be in PHP, 

accessing a database server.

Each task might be a sub-routine, calling other sub-routines for sub-tasks.

Data flows into sub-routines through parameters, and back out through return 

values. A stack mechanism is used to make it work.   

Object-oriented programming

Object-oriented programming  OOP  has a central idea - an ( ) object.  An object 

is a bundle of data fields, and code units. An object encapsulates relevant data 

and code into a single thing. The bundle is more or less protected 

encapsulated  and can only be accessed in limited ways.( )

An object has a set of members. These members are data fields or methods 

code blocks, like functions . The data fields are like ordinary variables, except ( )

that each object has its own set of values. The data values give an object state. 

If we change the data values, the object changes state. Sometimes an object is 

immutable - it cannot change state after being created.

Why OOP? Two reasons

1. To avoid global data. Usually in procedural programming we have global data, and a set of 

functions. Any function can access the global data. A bug in any function might corrupt the 

global data make it invalid  and in turn this might make other functions to fail. This makes ( )

testing very inefficient -any new code in one function requires all other functions to be re-

tested. In OOP each object can only access its own data, so we can test this in isolation. 

2. It is often easier to think about areas of application in terms of things objects  doing various ( )

actions methods . For example in a graphics applications the things might be circles, ( )

rectangles, lines, text blocks and so on, each with position and colour, which the user might 

delete or copy of move or stretch and so on. OOP naturally maps these things to objects.

In most languages we can define a class to be a type of object. Then we have 

many objects of that type. For example in a graphics program we might have a 

Page 15 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

Circle class, and then many circle objects with different sizes, positions and 

colours. A class is a definition of a type. Its not a container or data structure like 

a queue or tree.

We say an object is an instance of a class, and making an object means 

instantiating the class.

Access modifiers

In some languages it is possible to declare class members to be public or 

private. This applies to methods and data fields. A private member can only be 

accessed from within the class - that is, from code in a method defined in the 

class. So it can only be used internally. A public member can be accessed from 

anywhere.

This is usually combined with public getter and setter methods. A getter 

methods provides read access to a private field - as for example

public int getX()
{
  return this.x;
}

in Java, letting code read the value of the x field from outside the class. A setter 

method provides write access, like

public void setX(int value)
{
if (value>0)
  this.x=value;
} 

A setter means code can change a private field, but the change should be 

validated, so only valid values can be set. In the example, x should be greater 

than 0, and only such a change is allowed.

So this is how encapsulation is being enforced

1. data members are normally private, and

2. access is only allowed through setters that validate changes

Java also has protected, which allows access for sub-class in the same or 

different packages.

The Python language has no way to enforce access modifiers. But there is a 

convention that fields that start with an underscore character, like _color, should 

be treated as internal and should not be accessed directly - because it might 

break the class, and might change in future versions.

Page 16 of 20 24/01/21



Introduction to Computer Science Fundamentals of Programming

Inheritance

The idea here is to re-use code. Having defined a base class, we can define a 

sub-class which inherits from it. Then the sub-class has all the members of the 

base class. Each can be changed (over-ridden  and new members added.)

In our graphics program we might define 

an Oval class. But a Circle is a kind of Oval, 

where the width and height are the same. 

So when writing the Circle class, we do not 

start from nothing. we start from sub-(

class  the Oval class. A Square is a kind of)  

Rectangle. So we might have a class  

hierarchy:

   

A Shape might have a colour, a center position, a width and a height. An Oval 

and a Polygon would inherit those. A Polygon would have an extra field - 

numberOfSides. This would be 3 for a Triangle, 4 for a Rectangle.

Some of these classes do not make sense to instantiate. We can draw an Oval 

or a Circle, but we cannot draw a Shape - because we do not know what shape 

it is. We can draw a Rectangle, but not a Polygon, if we do not know how many 

sides it has. So Shape and Polygon should be abstract classes, which cannot be 

instantiated.

We can change the methods inherited from a base class simply by re-defining 

them in a sub-class, with the same name. So when code says

someObject.someMethod  ()

the runtime will execute the correct version of someMethod - the base class 

method if someObject is an instance of the base class, or the over-ridden sub-

class version if someObject is a sub-class instance. This is called polymorphism.

Methods like this, which can be over-ridden in sub-classes, are called virtual 

methods. Often which verion to run is not known until runtime, and this is 

called dynamic despatch. In Java and Python, all methods are virtual unless (

they are final in Java, or static in Python .)

Composition and aggregation

We explain with an example. Suppose we have a College class. Colleges have 

departments, so College objects would have fields for Departments. 

Department would also be a class, and instances would be Department objects. 

So a College object contains Department objects.

Page 17 of 20 24/01/21

Shape

Oval

Circle

Polygon

Rectangle Triangle

Square



Introduction to Computer Science Fundamentals of Programming

This is called composition - when an object has data fields which are 

themselves objects. This is a one type of connection between classes. We say a 

College has-a Department.

A different type of class relation is called aggregation. If our college closes, its 

departments will cease to exist. But not the students. They will continue to exist. 

They exist independently of the college - not true of the departments. 

Aggregation means placing independent objects as fields in some other 

objects.

Object-oriented design

Object-oriented design  OOD  means designing a set of related classes ( )

suitable for some application usually to support an information system.

In OOP we code a model within the computer of a real-world system, such as a 

library, a student records system, a doctor appointments system and so on. 

Objects model real-world things. Classes model types of things. Methods 

models actions - what things do.

Creating this model is called OOD. It is the first stage in writing OOP code.

OOP code would use classes which are built-in either to the language itself, or 

in standard libraries. But OOD produces classes appropriate to the particular 

application area.

UML

Universal Modelling Language  UML  is a standard for( )  

sets of diagrams setting out the structure of informations 

systems. UML is very extensive, meaning it covers many 

kinds of diagrams for diffeernt aspects of information 

systems. We focus on class diagrams, showing what OOP 

classes are used and how they are related. 'Universal' 

means it applies to any programming language, not 

limited to any specific one.

A class is shown as a box divided into three parts. The top 

part is the class name, in the middle goes fields, and at 

the bottom methods. For example this shows a class 

named Person

It has 4 fields, personID, first Name,lastName and email. 

The - means these are private.

Page 18 of 20 24/01/21

Person

- personID : int
- firstName:String
- lastName : String
- email : String

+ getID : int
+ getFirstName:String
+ getLastName : String
+ getEmail - String
+ setEmail



Introduction to Computer Science Fundamentals of Programming

It has 4 methods - getID and so on. The 

+ means these are public.

# would mean protected.

We can also show inheritance between 

classes. For example:

Here the Employee class and Customer 

class are sub-classes of Person, so both 

inherit personID, firstName and so on.

They also have additional fields and 

methods as appropriate.

Note the lines with arrows for  

inheritance.

We can also show composition and 

aggregation:

Page 19 of 20 24/01/21

Employee

- dept : int
- taxCode : String
- PayGrade : int

+ getID ....
.....

Customer

- Addr1 : String
- Addr2 : String
- Phone : String
- orders : List

+ getID : int
+ ...

Department Order

Person

- personID : int
- firstName:String
- lastName : String
- email : String

+ getID : int
+ getFirstName:String
+ getLastName : String
+ getEmail - String
+ setEmail

Employee

- dept : int
- taxCode : String
- PayGrade : int

+ getID ....
.....

Customer

- Addr1 : String
- Addr2 : String
- Phone : String
- orders : List

+ getID : int
+ ...



Introduction to Computer Science Fundamentals of Programming

Department to Employee is aggregation - white diamond. If an employee is 

fired, their department still exits.

Order to Customer is composition - black diamond. We cannot have an order 

without a customer placing the order.

Page 20 of 20 24/01/21


	Data type
	Basic concepts
	Comments
	Variable declaration
	Constant declaration
	Assignment

	Selection
	Iteration
	Definite iteration
	Indefinite – check at start
	Indefinite – check at end
	Nested selection and nested iteration structures

	Subroutines, procedure, functions
	Meaningful identifier names
	Arithmetic
	Relational operations
	Boolean operations
	Constants and variables
	String-handling operations
	Random numbers

	Exception handling
	Subroutine parameters and return values
	Local and global variables
	Stack frames and subroutines

	Recursive techniques
	Programming paradigms
	Procedural programming
	Object-oriented programming
	Access modifiers
	Inheritance
	Composition and aggregation
	Object-oriented design
	UML



