
Introduction to Computer Science JavaScript

JavaScript Notes
Software tools...2

Computers..2
Low and high level programming languages. .3
Compilers and interpreters..............................3
Editors..4
IDEs...4
JavaScript tool setup..5
The DOM...5
Security and the sand-box...............................6

Basic ideas..6
How to write JavaScript practically................6
Using external script files................................9
Variables..9
Assignment statements..................................10
Expressions..10
Input and output...11
Conditional statements..................................12
= and == and ===..13
Loops...14

Debugging..17
Strict mode...17
Debugging strategies.....................................18

Modularity..19
Managing scale - decomposition...................19
JavaScript functions.......................................19
Pass by value...21
Scope...22
hoisting..23
var let and const...23

Standards..25
How to get more help...26
Primitive types...26

Type...26
Strict typing...27
Primitive types...27

Objects and protoypes..29
How to make an object..................................30
The object.property dot notation...................30
What is the point of OOP?.............................30
Methods...31
Objects as associative arrays.........................31
Functions are objects.....................................32

Patterns of objects – using constructors....32
Object property attributes.........................33
The constructor property...........................35
Inheritance..36
Constructor prototype property.................38
Encapsulation..38
References...39
Static fields...41
The built-in objects and the Object object 42
Constructor..42
The global object......................................43

Function objects and concepts.......................43
Standard function definition and call........44
Functions as data objects..........................44
Function expressions.................................45
Anonymous functions...............................45
The Function object..................................45

Classes...46
Class..46
Methods..47
Constructor..48
Private fields...48
Static...49
Class inheritance.......................................50

Arrays, maps and other data structures..........51
Associative arrays.....................................51
Typed arrays..51
The Array object.......................................52
The Set object...53
Map...54

The DOM - JavaScript in the web page........54
Responding to a button click....................55
A basic calculator......................................56
More JavaScript DOM use.......................57

Modules...58
Basic idea..58
Need server not file://...............................58
Basic example...58
Modules always strict mode.....................60
Use of default..60
Import and export formats........................61
Namespaces and importing objects...........61

Page 1 of 62 24/01/21

Introduction to Computer Science JavaScript

Software tools

Computers

This text is about programming computers. That includes mobile

phones, tablets, laptops and desktop computers, and also devices like

smart TVs, automobile engine management systems, printers,

scanners and so on.

To think about all these different types of devices at the same time, it

is useful to have an abstract model of computing. This means to just

think about what they have in common, and leaving out the details of

exactly how they work.

One abstract model is a Turing machine Alan Turing, 1936 . This has ()

a tape , on which symbols are written, and a head which can read ‘ ’

and write on it. The tape head is connected to a finite state machine.

This is something which switches from its current state to another

state, depending on its current state and the symbol under the tape

head. We can think of the finite state machien as being like a

processor and memory, and the tape is like a file store on a hard disc

or cloud storage.

A different abstract model is the lambda calculus Alonzo Church and(

Stephen Kleene, 1935 . This sees a computer as a function, like a)

mathematical function such as square root. This has input say, 9 and()

produces output 3 . The lambda calculus is a totally general version ()

of this. It can be proved that Turing machines and the lambda

calculus are equivalent.

We will take a computer to be more practical. The stored program

concept has the program, as a sequence of instructions, held in

memory while it is being executed, alongside data also in memory.

The memory is organised as a set of cells or locations, each with a

different address, and holding one byte eight bits, binary digits, 0s (

or 1s, like 0110 1010 . That means all program instructions and all)

data must be encoded as binary patterns.

The computer also has a processor. This can read program

instructions out of memory, decode and execute them, and move on

Page 2 of 62 24/01/21

Introduction to Computer Science JavaScript

to the next instruction. A processor has a small number of registers,

which are very fast storage locations inside the processor, which

program instructions often refer to.

In practice a computer may have a multi-core processor, containing

several processors which can run in parallel, and a maybe a graphics

processor and memory just used for graphics.

Low and high level programming languages

The instructions the processor can recognise and execute are called

machine code or native code. Different processors have different

machine code instruction sets. Typically a processor has around 200

instructions it can execute.

Those instructions are represented by binary patterns so 1011 1010 –

might mean add . ‘ ’

It is possible in theory to write programs in machine code, but is

totally impractical. Instead we use languages like JavaScript or C,

which use more natural language words like while and if . ‘ ’ ‘ ’

Low and high level languages are a range. At the low level end we

have native code and assembler, with instructions about processor

registers and memory locations. At the high level end languages like

JavaScript use a small set of English words as instructions typically (

aound 50 words .)

Compilers and interpreters

Only native code actually executes in a computer. So the high level

language rogram we write must be changed into machine code. One

software tool to help with this is called a compiler. This is software

which reads in a high level language program called (source code)

and outputs the equivalent, changed into a different language called(

object code . Usually object code is native code. An example of a)

compiler in common use today is gcc, the open source Gnu Compiler

Collection.

So the use of a compiler is a two-stage process:

1. Compile the source into native code

Page 3 of 62 24/01/21

Introduction to Computer Science JavaScript

2. Execute the resulting object code.

Different things can happen at these two stages. The first is called

compile-time. The second is run-time.

Another type of tool is an interpreter. This inputs a high level

language program often called a script and executes a loop:()

repeat for each instruction
.. work out how to do it
.. do it
until end of script reached

Different languages are usually treated in different ways. C, for

example, is usually compiled to native code, while JavaScript is

usually interpreted. But in theory any language can be interpreted or

compiled.

Editors

Source code is just text like for example–

var x=5;
var y=4;
var z=x+y;
console.log(z);

We need a way of writing this text, and also reading it in from a text ‘ ’

file, editing it, and writing a new version to a text file. A software tool

to do this is called a text editor.

This is different from a word processor. This includes formats like font

styles, size, colour, layout and so on. But source code is text, and

nothing else.

Text editors are pretty simple applications.On Windows, notepad is a

text editor provided with the operating system. Other options are

notepad++ and atom and textpad. Linux text editors include nano

and geany and gedit.

IDEs

An IDE is an integrated development environment . When ‘ ’

programming we need to:

• write and edit source code

Page 4 of 62 24/01/21

Introduction to Computer Science JavaScript

• compile it

• run it to test it out

• repeat until its time to go home

An IDE is a software tool which makes for quick and easy access to an

editor and a compiler. It will also offer other features like

• managing a set of related source code files, and other resources such as images, in a

project

• ability to handle different compilers and languages

• debugging support like stepping through a program one instruction at a time–

• syntax-colour showing keywords in one colour, number in another and so on–

• format source code neat indentation–

Common IDEs are Netbeans, Eclipse, Intellij IDEA, Microsoft Visual

Studio and Android Design Studio.

JavaScript tool setup

JavaScript code is usually interpreted, using the interpreter inside a

web browser. So all we need is a text editor and a web browser, used

like this:

1. Use a text editor to edit the JavaScript source code

2. Open it as a local file in a web browser how depends on the browser, but its CTRL-(

O on Chrome, Firefox and Opera to see if it works)

3. Go back to step 1 if needed

The DOM

The DOM is the Document Object Model.

Usually JavaScript runs in a browser, and needs to refer to the

displayed web page. The DOM is how it can refer to the web page

and the parts in it. We have a section about the DOM later.

Most of the examples here use the console, not the DOM - so they

are not typical of how real JavaScript is used.

Page 5 of 62 24/01/21

Introduction to Computer Science JavaScript

The idea is to keep things as simple as possible, to get an

understanding of the JavaScript language, including OOP and

functional programming.

Once that is understood, and html and CSS, it is possible to use

JavaScript normally.

There are many 'frameworks' like JQuery. These are libraries of

JavaScript code. It is a good plan to learn the language before trying

to use libraries in that language.

Security and the sand-box

JavaScript code is usually embedded in a web page and executes

when the user downloads it from the web. The user has no idea what

the code is doing.

This is therefore a potential security risk. Suppose the code reads all

the personal data stored on the user s device and sends it ’

somewhere? Or deletes everything on the user s device?’

To prevent this, JavaScript in a browser runs in a restricted sand-box.

It cannot read or write anything on the user s machine, on any drive ’

or in the memory of other processes. An exception to this is html5

local storage , but this is restricted to storage for that particular ‘ ’

domain, and it cannot send any data from it anywhere elsewhere.

This is not true for JavaScript executing outside the browser. For

example, node.js can read and write local files.

Basic ideas

How to write JavaScript practically

Usually JavaScript code is executed by the interpreter in a web

browser, and it is embedded in a web page. So you need to:

• Use a text editor to write a web page with JavaScript in it, and save it in a file named

something.html

Page 6 of 62 24/01/21

Introduction to Computer Science JavaScript

• In a web browser, open the file something.html locally Ctrl-O()

• Output from the JavaScript is usually shown in the html of the web page. But to start

with, we can get simple output to the console using console.log. So you must tell

the browser to display console output

For example, here is a web page being edited in Visual Studio:

The JavaScript is lines 10 to 15. The rest is html for the web page. This

is saved as temp.html

Page 7 of 62 24/01/21

Introduction to Computer Science JavaScript

Then this is opened locally in Chrome:

In Chrome the console is opened by clicking the 3 dots top right,

then More tools.. Developers tools.

Do not attempt to type out that file. Copy-paste this:

<!DOCTYPE html>

<html>

<head>
 <title>The title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <script>
 'use strict';

 var x = 4;
 var y = 5;
 var z = x + y;
 console.log(z);

 </script>
</head>

<body>

</body>

</html>

Most of this is html hypertext markup language. This is made of –

elements, which start and end with tags, like <head>..</head> and

Page 8 of 62 24/01/21

Introduction to Computer Science JavaScript

<title>..</title>. One of these tags is <script>, enclosing JavaScript

code. When the browser sees this, it executes it using the interpreter.

We will usually just list the JavaScript, like

 'use strict';

 var x = 4;
 var y = 5;
 var z = x + y;
 console.log(z);

but in fact this needs to be embedded in the html web page.

Using external script files

We can keep the html web page, and JavaScript code, in separate file,

like:

<!DOCTYPE html>

<html>

<head>
 <title>The title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <script src="myscript.js"></script>
</head>

<body>
.. web page here..
</body>

</html>

Then myscript.js just contains the JavaScript code in a separate file.

This has the big advantage that we can use same code in many

pages. But to keep things simple, here we embed the code in the web

page.

Variables

A variable is

• some data held in memory as a program executes,

• which has a name, and

Page 9 of 62 24/01/21

Introduction to Computer Science JavaScript

• usually changes in value during execution

In our example script we have three variables, named x y and z. These variable names are

examples of identifiers names chosen by the programmer. Identifier names should be –

chosen to suggest the purpose or idea of it, or say clearly what it does. In this example

the x y and z are just simple examples, and represent nothing except three data values.

Assignment statements

Programs mostly consist of statements, which are usually either

instructions to the computer to do something, or supply some

information needed.

In many languages Java, C, C++, JavaScript statements should be ()

separated by a semi-colon a ;–

In JavaScript, if the programmer misses out the ; the interpreter will in

effect insert it automatically. This is an unfortunate feature, since it

encourages a habit which will not work in other languages.

One type of statement is an assignment, such as

var x=4;

This assigns the value 4 to the variable x. The direction of data

movement is right to left the 4 moves to x. Any previous value of x –

is lost.

In an expression, the terms left-hand and right hand side are used. In

this example 4 is the right-hand side and x is the left. There are rules

about what can appear on the left and right. These are mostly logical.

For example

var 4 = x;

would mean take the value of x, and store it at 4. In other words take

the value of 4 and change it to x. But this makes no sense, since we

cannot change the value of 4.

Expressions

Often the right hand side is an expression something for the –

interpreter to calculate the value of. For example in

Page 10 of 62 24/01/21

Introduction to Computer Science JavaScript

var z = x+y;

x+y is an expression. The interpreter will calculate the value of this, at

run-time.

An expression consists of operators and operands. An operator is

something to do. Common ones are + for add, - for subtract, * for

multiply and / for divide. The precedence rules which to do first – –

are the same as in normal maths sometimes called BODMAS. So for–

example 3*4+5 is 12+5 = 17, and not 3*9 = 27. We can use round

brackets, so 3* 4+5 is 27.()

We should not write assignments like

var z=3*(4+5);

but instead should write

var z=27;

The first version just wastes time and computation.

Input and output

Output means sending the results of a program somewhere. For

JavaScript, that often means changing a web page and display a

result that way maybe as a number, but maybe changing the colour–

of something, altering page layout, moving to a new page location or

whatever. Output might go to a printer, or to a file on local storage,

or cloud storage or whatever.

JavaScript output often uses the DOM. For simplicity we will start by

outputting values to the console, by statements like

console.log(x,y,z);

so you need the console open in the browser.

Input includes

• The user typing something in at runtime

• A mouse click or mouse movement

• A touch on a touch screen

• A temperature read from a sensor

Page 11 of 62 24/01/21

Introduction to Computer Science JavaScript

• A value read in from a file

and so on.

Usually input in JavaScript comes through the DOM.

Input and output is usually referred to as I/O.

Conditional statements

A conditional statement executes another statement only if an

expression is true. This is often called an if statement. Like this:

<!DOCTYPE html>

<html>

<head>
 <title>The title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <script>
 'use strict';

 var x = 4;
 var y = 5;
 if (x>y)

{
console.log("x is bigger");

}
else{

console.log("x is smaller")
}

 </script>
</head>

<body>

</body>

</html>

Check:

• The round brackets in if x>y() ()

• No semi-colon after the if

• The curly brackets { and }. This makes a block, and we can have more than 1

statement, of any type, in the block

Page 12 of 62 24/01/21

Introduction to Computer Science JavaScript

• The else part is optional.

= and == and ===

Do not use = to compare values. For example:

var x = 4;
var y = 5;
if (x=7)
{
console.log(x);
}

x=7 does not test if x is equal to 7. It is an assignment, to make x 7.

So this always prints out 7.

Better is to use ==

 var x = 4;
 var y = 5;
 if (x==7)
 {
 console.log(x);
 console.log("x is 7");
 }
 else
 {
 console.log(x);
 console.log("x is not 7");
 }

But JavaScript is unusual in that it uses type coercion

 if (4=='3+1')
 {
 console.log("same");
 }
 else
 {
 console.log("different");
 }

This means the interpreter will sometimes change the type of

operands to make them comparable. In this example, the type of 4 is

number, and '3+1' is a string, but type coercion converts them to the

same type, and decides they are the same.

=== is better:

 if (4==='3+1')
 {

Page 13 of 62 24/01/21

Introduction to Computer Science JavaScript

 console.log("same");
 }
 else
 {
 console.log("different");
 }

=== compares type and value, with no type coercion, so it outputs

'different'. Usually === is the one to use.

Loops

A loop is used to repeat code. This is often called iteration.

JavaScript has 5 types of loops, and 2 statements relating to loops

while

There is a loop header which starts 'while.' and this is followed by the

loop body, which is the statements which are repeated. The loop

body is often a block, enclosed in { curly brackets }.

After while there is a boolean expresion in round brackets . The ()

loop body repeats so long as the expression is true.

For example:

var counter = 0;
while (counter < 5) {

console.log(counter, "Hello");
counter++;

}

It could be the expression is false the first time in, in which case the

loop body will not be executed, even once:

 var counter = 7;
while (counter < 5) {

console.log(counter, "Hello");
counter++;

}

do.. while

This is similar to a while loop, except the expression comes at the end

of the loop body:

var counter = 0;
do {

Page 14 of 62 24/01/21

Introduction to Computer Science JavaScript

console.log(counter, "Hello");
counter++;

}while (counter < 5)

As a result, a do..while will always execute at least once.

for loop

Most loops have 3 parts - startup, when to carry on repeating, and

what to change every time.

A for loop header has these parts:

for initialisation; when to continue; what to change()

For example

for (var counter=0; counter<5; counter++)
{

console.log(counter, "Hello");
}

so this starts with counter=0

Each time around, it does counter++

and it repeats so long as counter<5

for..in

JavaScript objects have a set of attributes, and a for..in loop lets us

iterate over them:

 var person=[];
person.name="Fred";
person.passport=72354;
person.phone="07747 827 100";

for (var attribute in person)
{

console.log(attribute, person[attribute]);

This outputs:

name Fred

passport 72354

phone 07747 827 100

Page 15 of 62 24/01/21

Introduction to Computer Science JavaScript

for of

This iterates over the values of an object value not value names :()

var person=["Fred", 72354, "07747 827 100"];

for (var attribute of person)
{

console.log(attribute);
}

break and continue

break breaks out of and ends a loop. It usually comes with an if.

continue means 'continue looping, but skip the rest of the body this

time':

var i = 0;
while (i < 10) {

i++;
console.log(i);
if (i % 2 === 1) continue; // skip the next part
console.log("Even");
if (i === 8) break; // stop at 8

}

This outputs

1

2

Even

3

4

Even

5

6

Even

7

8

Even

Page 16 of 62 24/01/21

Introduction to Computer Science JavaScript

Debugging

Debugging is the process of finding and correcting errors in code.

The ability to debug is just as important as the ability to write

program code.

There are three broad classes of errors.

The first are errors that break the rules of the language that is, –

syntax errors. These should be detected by the compiler or

interpreter.

The second are errors that occur at runtime. These might produce an

exception,

The third are logic errors, sometimes called algorithm errors. The

method being used in the program is incorrect, and does not do

what the program is intended to do.

Strict mode

In the earliest days of the web, when Javascript was new, code was

being produced by people who were new to programming, so errors

were very common. So most interpreters would attempt to ignore

syntax errors. This is non-strict mode. In strict mode, the interpreter

will signal errors.

A consequence of non-strict mode means that errors can be difficult

to find. For example, in non-strict mode variables do not need to be

declared. But that means if you mis-type a variable name, a new

variable just appears. For example

var singleton=false;
..
simpleton=true;

We meant to have a variable named singleton. But we mis-typed it as

simpleton . Now we have another variable named simpleton, and ‘ ’

singleton is still false. There is no error message, and it will take us an

hour to spot the mistake.

You tell the interpreter to use strict mode by putting use strict as the‘ ’

first line in a script. So

Page 17 of 62 24/01/21

Introduction to Computer Science JavaScript

 <script >
 'use strict';
 x = 1;
 console.log(x);
 </script>

works as expected x is not declared, so we get a syntax error.–

But

 <script >
 x = 1;
 'use strict';
 console.log(x);
 </script>

in fact is not in strict mode, and we get no syntax error.

You can also set an individual function to be in strict mode. But a

better option is to make the entire script be strict.

Modules see later are automatically in strict mode.()

Debugging strategies

1. Read the error message what the error is and where it is. Try to –

make sense of it.

2. Be clear what should happen. What is the correct output, and how

does it differ from the actual output?

3. Print debugging. This means outputting important variables at key

points in the code. For JavaScript, this probably means console.log

4. Comment debugging. The idea is to find which part of the code

causes the error, without deleting it, then re-typing it. So you

comment out sections of code /* like this */ If the error remains, that

code was OK, and you can remove the commenting

5. Copy the error message and Google it.

6. Use a debugger. This is software which lets you do things like

stepping through codeone statement at a time, adding watch ‘

variables to display values, run to cursor which means run at full ’

speed up to a point in the code, and so on. Not commonly available

in JavaScript.

Page 18 of 62 24/01/21

Introduction to Computer Science JavaScript

7. Does the code actually execute? You have some code which does

not do something is it because it simply never executes? Put a –

console.log or an alert just to see if that code executes.

Modularity

Managing scale - decomposition

One of the tasks of software engineering is managing scale. Dealing

with 10 or a 100 lines of code is not a problem but a million is.–

The usual solution is some type of decomposition splitting a –

problem, and the code which solves it, into smaller problems. This

means that

• The problems are simpler and the code is smaller

• The code units can be tested separately

• They can be written by separate team members, at the same time in parallel, so the

over project is shorter

• They can be re-used in other projects.

Modularity is usually achieved in JavaScript by using functions,

described in this section.

More recently, modules have become available - see later.

JavaScript functions

How code is split depends on the language. In JavaScript the

standard technique is to use a function. For example:

<!DOCTYPE html>

<html>
 <head>
 <title>The title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <script>
 function average (a,b)
 {

Page 19 of 62 24/01/21

Introduction to Computer Science JavaScript

 var result = (a+b)/2;
 return result;
 }

 var x=3;
 var y=4;
 var z=average(x,y);
 console.log(z); // outputs 3.5
 </script>
 </head>
 <body>

 </body>
</html>

Control flow

In other words, what happens when? Execution does not start at the

function definition, which is

 function average (a,b)
 {
 var result = (a+b)/2;
 return result;
 }

It starts at the first code not in a function, which is

 var x=3;

Then at

 var z=average(x,y);

the function is called. That makes execution switch to the start of the

function, and it carries on until it hits the return. The return

instruction means return to where you were called from . Finally it ‘ ’

does

console.log(z);

Data flow into the function

Data values are passed into a function through parameters –

sometimes called arguments. So in

 function average (a,b)

the function named average has two formal parameters, named a

and b. When the function is called, at

Page 20 of 62 24/01/21

Introduction to Computer Science JavaScript

var z=average(x,y);

the actual parameters are x and y. These are matched up in order So

the value of x 3 is copied to a, and the value of y 5 is copied to b. () ()

So inside the function,

 var result = (a+b)/2;

result will work out to be 3.5.

Data flow out

A value can flow out using the return statement. So

 return result;

does 2 things. It returns control flow to where the function was called

from, and it passes back there its value in this case, 3.5. Then in–

var z=average(x,y);

the returned value is assigned to variable z.

We can call a function many times, such as:

 var x=3;
 var y=4;
 var z=average(x,y);
 console.log(z);
 z=average(8,9);
 var another = average(z,x);

control and data flow works as described.

Pass by value

Look at this code:

 function average (a,b)
 {
 var result = (a+b)/2;
 a=99;
 return result;
 }

 var x=3;
 var y=4;
 var z=average(x,y);
 console.log(x, z); // outputs 3, 3.5

Page 21 of 62 24/01/21

Introduction to Computer Science JavaScript

Here the value of the parameter a is changed inside the function. But

this does not alter the matching actual parameter, x. Why not?

These are numbers, and in JavaScript, numbers are primitives. And

primitives are passed by value . That means a ‘ ’ copy is passed to the

function. So a=99 alters the copy it does not change the original, x.–

Scope

Look:

 var x=3;
 var y=4;

 function average (a,b)
 {
 var x;
 var result = (a+b)/2;
 x=99;
 return result;
 }

 var z=average(x,y);
 console.log(x, z);

We declare 2 variables named x. We assign 3 to one, and 99 to the

other. But the x inside the function does not change the x outside the

function.

Scope means the part of a code sequence where a name has the

same meaning if any if it is not declared, it has no meaning .– ()

In JavaScript there are 2 scopes inside a function, which is called –

local, and outside, which is called global.

In this example we have a local x and a global x. They have the same

name but no connection. Assigning to one does not alter the other.–

This is good, because if we are writing a function and want to use a

local variable, we do not need to worry whether we have used the

same variable name elsewhere. Even if we have, local variables will

not alter each other.

Each function has its own, separate, scope:

 var x=3;

Page 22 of 62 24/01/21

Introduction to Computer Science JavaScript

 var y=4;

 function average (a,b)
 {
 var x;
 var result = (a+b)/2;
 x=99;
 return result;
 }

 function another()
 {
 y=100; // the global y
 var x=89; // a different local x
 }

 var z=average(x,y);
 another(); // execute another
 console.log(x, y, z); // 3,100,3.5

hoisting

Variable declarations are treated as if they are 'hoisted' to the top of

the code.

For example:

'use strict'

x=2;

fails, because we did not declare , and we would usually say:

'use strict'
var x;
x=2;

declaring x before we use it. But we can also say:

'use strict'
var x;
x=2;

because the var x is in effect hoisted to the top of the code.

var let and const

In strict mode we must declare variables. There are 3 ways to do that,

using var let or const. This summarises the differences:

Page 23 of 62 24/01/21

Introduction to Computer Science JavaScript

scope hoisted? can be re-declared? can be re-assigned?

var local to function, or global yes yes yes

let local to block no no yes

const local to block no no no

For example:

'use strict'
x=3;
var x; // hoisting happens
var x; // re-declaration OK
x=4;
function f()
{
var x; // is local
x=8;

}
f();
console.log(x); // 4
for (var i =0; i<10; i++)
{

var x=9; // not local
}
console.log(x); // 9

compared with let:

// x=3; 'Cannot access 'x' before initialization'
let x; // so no hoisting
// let x; re-declaration not allowed
x=4;
function f()
{
let x; // is local
x=8;

 console.log(x); // 8
}
f();
console.log(x); // 4
for (var i =0; i<10; i++)
{

let x=9; // local - block scope
}
console.log(x); // 4

and const:

'use strict'
// console.log(x); No hoisting
// const x; Missing initializer in const declaration"

Page 24 of 62 24/01/21

Introduction to Computer Science JavaScript

const x = 4; // OK
// x=4; cannot assign to constant
function f()
{
const x=8; // is local

 console.log(x); // 8
}
f();
console.log(x); // 4
for (var i =0; i<10; i++)
{

const x=9; // local - block scope
}
console.log(x); // 4

This is on Chrome 88.

A reasonable plan seems to be to use let for variables and const for

constants.

Standards

A computing standard is a set of rules, ideas and definitions which

many people agree with. Standards are agreed by committees

working in organisations such as the ISO, IEEE, W3C and IETF.

Standards are mostly open - everyone can access them, and chose to

agree with them, or not a closed standard is made up by one (

company . The idea is that the pressure to agree comes from the fact)

that products do not work together unless they use an open

standard.

As an example, a web browser which does not support the current

html5 standard would not display web pages correctly, and no-one

would use it.

A language is a set of rules and definitions. Most languages, such as

C, C++ and Java, have open standards.

For JavaScript, the standard is set by an organisation named ECMA.

Versions are released every few years. The 2020 version is here.

Page 25 of 62 24/01/21

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

Introduction to Computer Science JavaScript

How to get more help

You can Google or search youtube, but this is a bad idea. JavaScript

can seem like a simple language, but it is not. There are many things

on the web about JavaScript written by people who have little

understanding of it. Many are mis-leading or simply incorrect. Be

wary of simply becoming more confused. Here are some suggestions

for checking your understanding

Write and run your own code
snippets

You get to see actual output. But it might be different with different
browsers or non-browser interpreters and so on.

Current ECMAScript standard This sets out the actual rules of the language. But it is not a tutorial
and does not try to teach the ideas, so for reference only. Also most
browsers will not keep up with this latest standard

Previous language standards 5 .1 , 2016, 2017, 2018, 2019

https://esdiscuss.org/ ECMAScript discussion archive

https://es.discourse.group/ ECMAScript standard community discussion

https://caniuse.com/ Guidance about what you feature you can use, in what browser, in
what version

https://developer.mozilla.org/en-
US/docs/Web/JavaScript

From Mozilla, MDN provides reference material and tutorials at a
range of levels

https://developer.mozilla.org/en-
US/docs/Web

Mozilla MDN material on many aspects of web technology

https://html.spec.whatwg.org/ Html5 – ‘the living standard’

https://developer.mozilla.org/en-
US/docs/Web/CSS

Mozilla MDN on CSS

Primitive types

Type

Examples of data types are integers whole numbers , numbers with ()

fractional parts, characters, dates, times, colours, and so on. We can

do different things with different types for example we can multiply –

numbers but we cannot multiply colours. Programming languages

use the idea of data type.

Page 26 of 62 24/01/21

https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://html.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://caniuse.com/
https://es.discourse.group/
https://esdiscuss.org/
https://ecma-international.org/ecma-262/9.0/
https://ecma-international.org/ecma-262/9.0/
https://ecma-international.org/ecma-262/8.0/
https://ecma-international.org/ecma-262/7.0/
http://es5.github.io/
http://es5.github.io/
https://ecma-international.org/ecma-262/11.0/

Introduction to Computer Science JavaScript

Some languages extend the idea of type to include function type C –

does this. Other languages treat functions as data JavaScript does –

this.

Strict typing

In some languages, variables have a type, and cannot change. In Java

for example we say things like

int x;

which means the type of the variable x is an integer. These languages

are strictly typed.

In JavaScript variables do not have type.

But values have type.

So we can change a variable s value, and so change the type:’

 <script>
 var x;
 x=8;
 console.log(typeof x); // number
 x="Hello";
 console.log(typeof x); // string

 </script>

Primitive types

JavaScript has 6 primitive types : number, string, boolean, bigint,

undefined and symbol. The primitive types are just values.

It also has some object types. There are some built-in objects, and the

programmer can define others. An object has data parts, called fields,

and code parts, called methods.

For each primitive type like number there is a matching wrapper ()

type like Number which is an object. JavaScript is case sensitive, so ()

number and Number are different.

Page 27 of 62 24/01/21

Introduction to Computer Science JavaScript

Number

This primitive type is a number, positive or negative, whole number or

not:

 var x;
 x=8;
 console.log(typeof x); // number - primitive
 x=new Number(8);
 console.log(typeof x); // object
 console.log(x instanceof Number); // true

The Number object is said to be a wrapper object it wraps a –

primitive value of type number, and adds relevant methods. The

Number and other objects is examined later.

The JavaScript number primitive is held in 64 bits floating point IEEE

754 format. That means they are always stored in 64 bits, always have

fractional parts, and are held in a format described in the IEEE 754

standard.

Strings

A string is a sequence of 1 or more characters. And a character is a

like a b c A B C * ^ $ Σ π ± Ῠ and so on. We can add strings by ‘ ’

concatenating them just joining them together:–

 var x;
 x="A";
 x=x+1;
 console.log(x); // x1
 console.log(typeof x); // string
 x=x+" a b c d";
 console.log(x); // x1 a b c d

Note a space character is just another character. So a b is a string “ ”

of 3 characters.

JavaScript uses Unicode:

 var x;
 x="αβγ ∈∃ℂ";
 console.log(x); // αβγ ∈∃ℂ

Boolean

The boolean type has just 2 possible values true and false:–

Page 28 of 62 24/01/21

Introduction to Computer Science JavaScript

 var x;
 x=(5 === 6);
 console.log(x); // false

BigInt

A BigInt primitive is whole number which can be indefinitely large. A

BigInt literal an actual value is written with an n after it. So for – –

example

 var x;
 x= 10n**300n;
 console.log(x);

 That makes x to be 10300, when the largest safe integer is about 1015 –

safe in the sense that calculations with it will not go wrong.

BigInt may be slower than a number.

BigInt is a fairly new type, and old browsers will not understand it.

Undefined

The undefined type has just one value : undefined. This is the value

variables have if they have not been assigned a value:

 var x;
 console.log(x); // undefined

Objects and protoypes

In computer science an object is a bundle or a packet or group or (

bunch or collection of data values and code. Usually objects have)

names, as identifiers, and are held in memory during program

execution.

JavaScript is an object-oriented programming language OOP and ()

can use an objected-oriented paradigm. That means it has a syntax

for dealing with objects, and JavaScript code is often about objects.

ES6 introduced the keyword class . This section is about objects and ‘ ’

prototypes, which are a key idea about how JavaScript objects work.

The next section covers classes, which are much easier to use.

Page 29 of 62 24/01/21

Introduction to Computer Science JavaScript

How to make an object

There are several ways to make a new object in JavaScript. Here is

one way:

 var person=
 {
 name: "John",
 dateOfBirth: "1.3.94",
 payrollNumber: 423
 };

This declares a variable, named person. But this is not just one data

value. It has three fields, named name, dateOfBirth and

payrollNumber. These fields are string and number primitives.

This is called an object literal.

Representing a date as a string is not a good method we do it here –

to keep things simple.

The object.property dot notation

We refer to one of the fields within an object by saying what the

name of the object is, then a dot . then the field name. For ()

example

 console.log(person.name); // John
 console.log(person.payrollNumber); // 423

What is the point of OOP?

OOP is not essential. Complete operating systems, like Unix, have

been written without objects.

But OOP has several advantages. One is that we often want to code

about things which have several aspects. The above example shows

this one employee has a name, a date of birth, a payroll number –

and so on. Primitive types can handle these as separate values, but an

object can bring these together as a single thing.

Page 30 of 62 24/01/21

Introduction to Computer Science JavaScript

Methods

An object is a bundle of data values and code. The code parts are

called methods. We can tell an object to execute one of its methods.

For example

 var person=
 {
 name: "John",
 dateOfBirth: "1.3.94",
 payrollNumber: 423,
 toString: function()
 {
 return "person: "+this.name+"\nDOB "+this.dateOfBirth+
 "\nPayroll number "+this.payrollNumber;
 }
 };

Now we have 3 data fields, plus another field named toString. This is

different in that it is defined as a function. The syntax is similar to that

used in our function definitions before, except that we are not giving

it a name as function toString … Instead we are saying () toString:

function ()

Within the function we use ‘this to refer to the object which will ’

execute it. So this.name means the name field of the object carrying

out the toString method.

We can tell the person object to do its toString method like this:

console.log(person.toString());

and this outputs

person: John
DOB 1.3.94
Payroll number 423

Objects often have a toString method, to produce a string version of

the object for output and debugging purposes.

Objects as associative arrays

In computer science, an associative array is a set of key-value pairs.

That means we have some data values, and each value is linked with

some key. We can use the key to access the value. This is sometimes

called a map it connects each key with some value.–

Page 31 of 62 24/01/21

Introduction to Computer Science JavaScript

We can do that as follows in JavaScript:

 var person=[]; // create an empty associative array
 // then add fields:
 person['name']= "John";
 person['dateOfBirth']= "1.3.94";
 person['payrollNumber']=423;
 // access with dot notation..
 console.log(person.name);
 // or as associative array..
 console.log(person['name']);

The key must be a data value, or an identifier with a suitable value:

 var person=[];
 person['payrollNumber']= 123;
 // or
 var fieldName='payrollNumber';
 person[fieldName]=123;
 // but not
 person[payrollNumber]= 123; // unless payrollNumber is a
variable with a value

Functions are objects

In JavaScript, a function is an object. Function objects only differ from

other objects in that they can be called:

 function MyFunction(a,b)
 {
 return a+b;
 }

 console.log(MyFunction(2,3)); // 5 - call the function
 MyFunction.x=27; // use it as an object
 console.log(MyFunction.x); // 27

If we invoke the function using the keyword new, this constructs a

new object, as described next.

Patterns of objects – using constructors

The ways of making objects described above is fine for one of a ‘

kind situations, where we only want one object of a type. But we ’

often want several objects with the same structure the same set of –

fields but not values and the same set of values. That means ()

executing a similar sequence of instructions, repeatedly. That is what

a function does.

Page 32 of 62 24/01/21

Introduction to Computer Science JavaScript

We can do this using a constructor. This is a function, but invoked

using the keyword new, instead of the usual function call.

In that situation the constructor creates a new object, referring to it

as this. Fields can then be created on that object and values assigned

to the fields. At the function end, the this object is returned:

function Person(n,dob, pn)
 {
 this.name=n;
 this.dateOfBirth=dob;
 this.payrollNumber=pn;
 }

 var person1=new Person("John","1.2.99",1234);
 var person2 =new Person("June","2.2.99",1235);
 var anotherPerson = new Person("Jane","3.2.99",1236);

We can include methods as well as data fields:

 function Person(n,dob, pn)
 {
 this.name=n;
 ..
 this.toString = function()
 {
 return "person: "+this.name+"\nDOB "+this.dateOfBirth+
 "\nPayroll number "+this.payrollNumber;
 }
 }

 ..
 var anotherPerson = new Person("Jane","3.2.99",1236);
 console.log(anotherPerson.toString());

Object property attributes

A JavaScript object is a collection of properties. These properties can

have attributes.

We can control these directly using Object.defineProperty:

 function MyObject() { // constructor

 Object.defineProperty(this, 'b', {
 value: "Hello",
 writable: true, // we can change its value
 enumerable: false, // does not appear in a for..in
 configurable: true // can be deleted

Page 33 of 62 24/01/21

Introduction to Computer Science JavaScript

 });
 Object.defineProperty(this, 'c', {
 value: 21,
 writable: false, // we cannot change its value
 enumerable: true, // does appear in a for..in
 configurable: true // cannot be deleted
 });

 }

 var obj1 = new MyObject();
 console.log(obj1.b); // Hello
 obj1.b="bye";
 var p;
 for (p in obj1) // c, not b
 console.log(p);
 delete(obj1.c); // OK

An object can have two kinds of properties. A data property is as

above, and can have attributes of value, writable, enumerable and

configurable,

The other type of property is an accessor property. These would be

called accessor methods in Java. A accessor property is a getter or

setter function, or both getter and setter . A setter function has one ()

argument, and is used to set some value. A getter function has no

arguments, and is used to read some value:

 function MyObject() {
 ..
 Object.defineProperty(this, 'accessA', {
 set(x) { // setter function
 this.a = x;
 },
 get() { return this.a; } // getter

 })

 }

 var obj1 = new MyObject();

 obj1.accessA=77; // call the setter
 console.log(obj1.accessA); // call the getter

Page 34 of 62 24/01/21

Introduction to Computer Science JavaScript

The constructor property

All JavaScript objects have a property named constructor. If the

object has been made using the new syntax, the value of the

constructor property is as expected:

 function CTR() {
 this.x = 99;
 }

 var obj = new CTR();
 console.log(obj.x); // 99
 console.log(obj.constructor); // ƒ CTR() { this.x=99; }

So the value of the constructor property of obj is CTR, which is a

function.

Now a function is itself an object. So it in turn must have a

constructor property:

 var obj = new CTR();
 console.log(obj.x); // 99
 console.log(obj.constructor); // ƒ CTR() { this.x=99; }
 console.log(obj.constructor.constructor); // ƒ Function()
{ [native code] }

So the constructor of CTR is Function. This is as if we had said:

var CTR = new Function..

which is the effect of the actual

 function CTR() {

We can do this explicitly, as:

 var CTR = new Function('this.x = 99;');

 var obj = new CTR();
 console.log(obj.x); // 99
 console.log(obj.constructor); // ƒ anonymous() { this.x =
99; }

Now Function is an intrinsic object, which can be used to construct

functions, and other features related to functions. As an intrinsic

object, it is there when the interpreter starts. It was not made by

other JavaScript code, and this is why it says Function { [native ()

code] }

Page 35 of 62 24/01/21

Introduction to Computer Science JavaScript

If we make an object using the object literal syntax, it still has a

constructor property:

 var objLit =
 {
 x: 98
 }
 console.log(objLit.x); // 98
 console.log(objLit.constructor); // ƒ Object() { [native
code] }

so the constructor is Object, which is an intrinsic object.

Inheritance

In OOP the idea of inheritance is to avoid coding every new type of

object from nothing. Instead we try to use an existing object as the

basis for a new type. The idea is to re-use the fields in the old type in

the new type. We might change them, or add extra fields as well.

JavaScript does this using the idea of a prototype. An object can have

another object as its prototype. Then properties of the protoype are

inherited by the other object.

As an example, we will have an object with a field a, and this will be

the prototype of another object with a field b, and also the inherited

field a:

 function Base() {
 this.a = 101;
 }

 function Sub() {
 this.b = 99;
 this.__proto__ = new Base();
 }

 var obj = new Sub();
 console.log(obj.a); // 101
 console.log(obj.b); // 99

 JavaScript objects have a property __proto__ caution -see below . ()

The line

this.__proto__ = new Base();

sets that to be an object with Base as its constructor. So the a field

from Base is inherited by the Sub object.

Page 36 of 62 24/01/21

Introduction to Computer Science JavaScript

Each Sub object has its own, separate, a field:

 var obj = new Sub();
 var obj2=new Sub();
 obj2.a=200;
 console.log(obj2.a); // 200
 console.log(obj.a); // 101 - the default value

obj2 has its own a field, different from obj s a field.’

The name __proto__ for the property is a problem. Currently all

browsers understand it old Internet Explorer does not , but it is not ()

part of the ECMAStandard, and it may stop working. A better

alternative is Object.setPrototypeOf:

 function Base() {
 this.a = 101;
 }

 function Sub() {
 this.b = 99;
 Object.setPrototypeOf(this, new Base());
 }

and a corresponding Object.getPrototypeOf.

The base object may itself have a prototype, so we have the idea of a

prototype chain:

 function BaseBase() {
 this.q = 300;
 }

 function Base() {
 this.a = 101;
 Object.setPrototypeOf(this, new BaseBase());
 }

 function Sub() {
 this.b = 99;
 Object.setPrototypeOf(this, new Base());
 }

 var obj = new Sub();
 console.log(obj.q); // 300

Page 37 of 62 24/01/21

Introduction to Computer Science JavaScript

Constructor prototype property

Some objects those which are functions, and so can be used as –

constructors using new, have a property named prototype.

Confusingly, .prototype is different from .__proto__

 function Ctr() {
 this.b = 99;
 }

 var obj = new Ctr();
 console.log(obj.prototype); // undefined
 console.log(obj.__proto__); // {constructor: ƒ}
 console.log(Ctr.prototype); // {constructor: ƒ}

The idea of .prototype is that it is an object, belonging to a

constructor, from which all its fields are inherited by an object

constructed by that constructor. For example:

 function Ctr() {
 this.b = 99;

 }

 // give Ctr.prototype a function, named func, which sets b
 Ctr.prototype.func = new Function("x", "this.b=x");

 var obj = new Ctr(); //b will be 99
 obj.func(9); // call function from prototype, set b to 9
 console.log(obj.b); // 9

Encapsulation

One idea in OOP is that of encapsulation. The idea is that an object

bundles together code and data, and access to the data is controlled,

to make sure the data in the object is always valid and correct and

that the object cannot go wrong . ‘ ’

This was intended to solve a problem in structured programming,

where there would usually be a set of global data, and this would be

accessed by code in functions. The problem was there was no way to

control what code could alter what data. A bug in any one function

could corrupt the global data, which might make other functions fail.

Testing was then very difficult.

Page 38 of 62 24/01/21

Introduction to Computer Science JavaScript

The OOP solution was to encapsulate all data into separate objects,

so all data was a field in some object. And it was not directly

accessible in Java terms, it would be private. It can only be accessed–

through public getter and setter methods. And the setter methods

would validate any data changes, to ensure the data could never go ‘

wrong .’

This is what JavaScript accessor properties offer. For example,

suppose the value of a in our object cannot be negative. We just ‘ ’

need an if in the setter:

 function MyObject() {
 ..
 Object.defineProperty(this, 'accessA', {
 set(x) { // setter function
 if (x>0) this.a = x;
 },
 get() { return this.a; } // getter

 })

 }

References

Why does changing one object alter another object?

 function MyObject() {

 this.x=2;

 }

 var obj1 = new MyObject();
 var obj2 = obj1;
 obj1.x=9;

 console.log(obj2.x); // 9

and if JavaScript is pass by value, how come this works?

 function swap(a, b) {
 var t = a.x;
 a.x = b.x;
 b.x = t;
 }

Page 39 of 62 24/01/21

Introduction to Computer Science JavaScript

 function MyObject(v) {
 this.x = v;
 }

 var obj1 = new MyObject(1);
 var obj2 = new MyObject(2)
 swap(obj1, obj2);

 console.log(obj1.x, obj2.x); // 2 1

The answer is that if a variable names an object, the

variable is a reference to that object. In effect, the

variable is a pointer to the object, like this:

obj1 is a pointer to the object. We can think of this

as being the address in RAM of where the object is

held.

If we say

 var obj1 = new MyObject();
 var obj2 = obj1;

we have only said new once, so we only have ‘ ’ one object. We have

two pointers, obj1 and obj2, which point to the same object:

So if we say obj1.x=9, this changes obj2.x –

because they are the same object.

JavaScript is pass by value. This means when a

parameter is passed to a function, a copy is

passed. But when the parameter is an object, a

copy of a pointer to the object is being passed.

So the function can follow that pointer and alter

what is in the object.

So here:

function swap(a, b) {
 var t = a.x;
 a.x = b.x;
 b.x = t;
 }

Page 40 of 62 24/01/21

var obj1 = new MyObject();

x

obj1
a MyObject object
in memory

var obj1 = new MyObject();
obj2=obj1;

x

obj1
a MyObject object
in memory

obj2

Introduction to Computer Science JavaScript

the a and b are copies of pointers to two objects. The t=a.x follows

one pointer and gets the x field in that object. Then b.x=t follows the

b pointer, and writes that x value into the object that b points to.

In the calling code

 var obj1 = new MyObject(1);
 var obj2 = new MyObject(2)
 swap(obj1, obj2);

 we have used new twice, so we just have 2 objects not 4 . And the ()

swap function has exchanged their x fields.

If we had said

function swap(a, b) {
 t = a;
 a = b;
 b = t;
 }

it would have had no effect. The a and b are copies of pointers.

Changing those copies instead of the objects they point at has no ()

effect.

Static fields

In OOP, a static field is per object type, not per object.

So it is a single value shared between all objects of that type. Instead

of all objects having their own value, there is just one static value

belonging to the type. In JavaScript we can do this using a field of the

constructor function object. A constructor is a function, and a

function is an object, so it can have fields.

An example of the use of a static field is in a version of the auto-

number feature of some databases:

 Person.lastID=0; // static field initialisation – a field of
the function object

 function Person(n,dob) // payrollNumber is auto-assigned
 {

 this.name=n;
 this.dateOfBirth=dob;
 this.payrollNumber=Person.lastID; // current last ID
 Person.lastID++; // move static field onto next ID

Page 41 of 62 24/01/21

Introduction to Computer Science JavaScript

 this.toString = function()
 {
 return "person: "+this.name+"\nDOB "+this.dateOfBirth+
 "\nPayroll number "+this.payrollNumber;
 }
 }

 var person1=new Person("John","1.2.99");
 var person2 =new Person("June","2.2.99");
 var anotherPerson = new Person("Jane","3.2.99");
 console.log(anotherPerson.toString());

 The anotherPerson is

person: Jane
DOB 3.2.99
Payroll number 2

The built-in objects and the Object object

JavaScript has a set of built-in objects, which already exist when the

interpreter starts. They include:

Object and Function : the fundamental objects concerned with how

OOP works

Number, BigInt, Boolean, String and Symbol : the wrapper classes that

wrap primitive values. That means they have a primitive value as a

property, and have methods useful in connection with that type

Math, Date, RegExp, JSON : useful utility objects

Array, Set and Map : basic data structures

The complete reference for all built-in objects is at MDN.

Object is one of those pre-built objects It provides several things

useful for manipulating objects, and since JavaScript is an OOP

language, is key:

Constructor

Creates a new empty object:

 var obj = new Object();
 obj.f = 99;
 console.log(obj); // {f: 99}

Other methods include:

Page 42 of 62 24/01/21

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

Introduction to Computer Science JavaScript

Methods

Object.assign(to, from); copies enumerable properties from one object to another

Object.defineProperty(..) add a property to an object, with given attributes

Object.create Create an object with a given prototype

Object.freeze Prevent an object from being changed

Object.getPrototypeOf

Object.is Compares two objects (almost like ===)

Object.keys Return an array of enumerable own property names

Prototype methods

toString Return a string representation

valueOf For a wrapper class, returns the value wrapped

The global object

When the interpreter starts, there is a global object in scope. A this ‘ ’

in global scope refers to it. Anything you declare, like

var x;

in fact becomes a property of that global object.

In a browser, the global object is named window. Th eidentifier

globalThis refers to the global object in any environment:‘ ’

console.log(this); // Window
console.log(globalThis); // Window
var x=88;
console.log(globalThis.x); // 88
console.log(globalThis.Date); // ƒ Date() { [native code] }
console.log(Window===window); // false
console.log(window instanceof Window); // true
// var window = new Window(); no - Illegal constructor
var window;
console.log(window); // Window {parent: Window, opener: null, top:
Window, length: 0, frames: Window, …}

Function objects and concepts

We can think about functions in two different ways as code, or data:–

1. In C and Pascal and Basic and Algol and Fortran, a function is a code unit. It either

just does something a procedure in Pascal, or a void function in C , or it returns a ()

computed value. A function is a code block which executes. In JavaScript we often

have functions which executes when te user clicks a button, for example.

Page 43 of 62 24/01/21

Introduction to Computer Science JavaScript

2. Or, a function is a piece of data, like a number or a string. Code can input, process,

store and retrieve, and output data so it can do all of that with functions. Th eonly –

special thing about a function as a data type is that it can also be executed.

Languages which can handle functions as data which can be manipulated are known

as functional languages. JavaScript has an object named Function, which supports

this.

Standard function definition and call

Like this:

 function max(a,b)
 {
 return a>b? a : b;
 }

 var bigger = max(7,9);

Functions as data objects

For example:

 function max(a, b) {
 console.log(max.name); // max
 console.log(max.length); // 2 (number of arguments expected)

 return a > b ? a : b;
 }

 var x = max(8, 9); // calling the function

 console.log(max instanceof Function); // true
 var code = max.toString();
 console.log(code); // as above!

Here max is a function so it is an object, a bunch of data and –

methods, in an inheritance chain. Functions inherit from the built-in

object Function, and this has properties of name and length, as

shown above.

So max is an object, an instance of Function. From Function it inherits

the toString method, which produces the code of the function()

Page 44 of 62 24/01/21

Introduction to Computer Science JavaScript

Function expressions

An expression is code which evaluates to something. A function

expression is code which evaluates to a function. This could be

assigned to an identifier, and then called, like:

 var bigger = function (a,b) { return a>b? a : b; };

 var m = bigger(7,9);

Anonymous functions

If we say

var x=9;

we have an identifier x to which is assigned a value 9 . A function () ()

expression evaluates to a value a function object and sometimes – –

we do not need to assign that to an identifier. So it does not have a

name. For example

 function map(f,values) // apply function f to the array values
 {
 for (var index=0; index<values.length; index++)
 values[index]=f(values[index]);
 }

 var data = [1,2,3];
 map(function(x) { return 2*x;}, data);
 console.log(data); // [2, 4, 6]

Here function(x) { return 2*x;} is a data value, which is a

Function object. But it does not have a name it has not been –

assigned to an identifier. This is like x+y is an expression, and

sometimes we do not need to assign it to a name to use it. Here we

apply it, as a function, to every element of an array.

The Function object

Function is a pre-built object which relates to functions.

It can be used as a constructor. The arguments are an optional list of

strings, which are the arguments, and the final one is the source code

of the function. For example:

Page 45 of 62 24/01/21

Introduction to Computer Science JavaScript

var addUp = new Function('data','var result=0; var p; for(p=0;
p<data.length; p++) result+=data[p]; return result; ');

var values=[1,2,3];
var total=addUp(values);
console.log(total); // 6

In this example there is no advantage over a conventional function

definition. But it would be possible to construct the function

programmatically, and then call it. So JavaScript code can construct

code, and run the result.

If this is done on the basis of user input, this might be a security risk.

The Function object has properties name and length, and the

prototype has methods apply, call, bind and toString.

The difference between apply and call is that the first takes an array

of arguments, and the second a list:

 function max(a, b) {
 return a > b ? a : b;
 }

 console.log(max.apply(null,[5,4]));
 console.log(max.call(null,5,4));

Classes

JavaScript implements OOP using prototypes, as described in the

previous section. But some OOP languages, such as Java and C++,

use the idea of a class, as a type of object. ES5 introduced class into

JavaScript, as syntactic sugar that is, to make code look better, while–

keeping prototypes as the actual way OOP is implemented.

Class

A class is a type of object. It provides a template, a recipe or cookie

cutter for making sets of objects of the same type:

 class Person {
 firstName;
 lastName;
 }

Page 46 of 62 24/01/21

Introduction to Computer Science JavaScript

 var p1 = new Person;
 p1.firstName = 'John';
 p1.lastName = 'Smith';
 console.log(p1.firstName, p1.lastName);
 var p2 = new Person;
 p2.firstName = 'Jane';
 p2.lastName = 'Jones';
 console.log(p1.firstName, p1.lastName);

It is a convention to have class names starting Upper Case. This is to

make it clearer which identifiers are classes and what are not.

Here the p1 object is an instance of the class Person.

Methods

As well as data fields, a class can also define methods bundled into

an object:

 class Person {
 firstName;
 lastName;

 setFields(f, l) {
 this.firstName = f;
 this.lastName = l;
 }

 }

 var p1 = new Person;
 p1.setFields('John', 'Smith');
 console.log(p1.firstName, p1.lastName);

So now a Person instance knows how to do the setFields method.

In

 setFields(f, l) {
 this.firstName = f;
 this.lastName = l;
 }

The this is a refernce to teh object executing the method. So if we

invoked it by

 p1.setFields('John', 'Smith');

Page 47 of 62 24/01/21

Introduction to Computer Science JavaScript

then 'this' is a refernce to the p1 object. So this.firstName is teh

firstName field of the p1 object.

A method can contain any code, not just assignment to fields.

Constructor

As in the previous section, a constructor is code used to initialize an

object:

 class Person {
 firstName;
 lastName;

 constructor(f, l) {
 this.firstName = f;
 this.lastName = l;
 }

 }

 var p1 = new Person('John','Smith');
 console.log(p1.firstName, p1.lastName);

Constructors cannot be overloaded, meaning a class can only have

one constructor Unlike Java, where classes often have several (

constructors .)

Private fields

By default, class fields are public, meaning they can be accessed from

outside the class. As a result of accidental bugs, this can produce

invalid data:

 class Person {
 firstName;
 lastName;

 constructor(f, l) {
 this.firstName = f;
 this.lastName = l;
 }
 }

 var p1 = new Person('John','Smith');
 p1.lastName=''; // no last name after this
 console.log(p1.firstName, p1.lastName);

Page 48 of 62 24/01/21

Introduction to Computer Science JavaScript

We can prevent this by making data fields private, by having them

start with a #. Then they cannot be accessed from outside the class.

But then - how can we use them?

We must write public getter and setter methods to access them, and

the setter can validate any changes:

 class Person {
 #firstName; // private fields
 #lastName;

 constructor(f, l) {
 this.#firstName = f;
 this.#lastName = l;
 }

 setLastName(l)
 {
 if (l.length>0) // do not allow zero length last
names
 this.#lastName=l;
 }

 display()
 {
 console.log(this.#firstName, this.#lastName);
 }
 }

 var p1 = new Person('John','Smith');
 // not allowed - p1.#lastName='anything';
 p1.setLastName('Ali');
 p1.display();

Currently 2020 private fields do not work in Firefox and Internet ()

Explorer. They work in Chrome.

Static

Static members are per class not per object. In other words they are

data fields or methods for which there is just one copy, shared by all

instances of the class, and so common to all objects of that type. For

example, suppose we want to express the fact that people have two

legs, as distinct from horses that have four and spiders that have

eight:

 class Person {
 #firstName;

Page 49 of 62 24/01/21

Introduction to Computer Science JavaScript

 #lastName;

 constructor(f, l) {
 this.#firstName = f;
 this.#lastName = l;
 }

 static legCount=2;

 setLastName(l)
 {
 if (l.length>0)
 this.#lastName=l;
 }

 display()
 {
 console.log(this.#firstName, this.#lastName);
 }
 }

 var p1 = new Person('John','Smith');
 console.log(Person.legCount);

p1.legCount does not work a static field can only be accessed –

through the class, not an instance unlike Java . ()

Many sites say the purpose of static members is to 'save memory'.

This is not true. The purpose is to express the idea that a static

member is about the class and not about the objects.

Class inheritance

A class can extend another class. The original class might be called a

base class, and the extending class a sub-class. Instances of the sub-

class inherit properties of the base class:

class Base
{
 baseField=3;
}

class Sub extends Base
{
 subField=4;
}

var obj=new Sub();

console.log(obj.baseField, obj.subField); // 3 4

Page 50 of 62 24/01/21

Introduction to Computer Science JavaScript

The idea of this is to re-use code. If you need a class, and there

already is a class that does a lot of what you want, you can define

your class to extend the base class, and use its code.

We can get a class hierarchy, one base class, extended by some sub-

classes, which in turn are extended by others, and so on.

Some people say inheritance should be used with care, because of

the 'fragile base class' problem. This is if the base class definition

changes, sub-classes might stop working correctly.

Arrays, maps and other data structures

Associative arrays

We have seen that all objects are associative arrays or maps. So they

are key-value pairs:

var obj=new Object();
obj['x']=99; // write key-value x-99
console.log(obj['x']); // get value with key x

Typed arrays

These have either 8, 16, 32 or 64 bits per element, and are fixed

length. The idea is to enable javaScript to be able to manipulate data

in large binary blocks, like sound files or videos, at high speed.

For example:

var arr = new Int8Array(5);
for (var index = 0; index < arr.length; index++)
 arr[index]=index+10;
for (var index = 0; index < arr.length; index++)
 console.log(arr[index]); // 10, 11.. 14

We can iterate as an enumerable:

for (var p in arr)
 console.log(p, arr[p]); // 10, 11.. 14

There are signed and unsigned versions. An Int8Array is signed 8 bits,

and so the elements can range for -128 to +127:

 var arr = new Int8Array(5);
arr[2]=-1;
console.log(arr[2]); // -5

Page 51 of 62 24/01/21

Introduction to Computer Science JavaScript

If the value is outside this range, the result is wrong :‘ ’

var arr = new Int8Array(5);
// range is -128 to +127
arr[2]=+128;
console.log(arr[2]); // -128

but a Uint8Array is unsigned, so it ranges from 0 to 255:

var arr = new Uint8Array(5);
arr[2]=+128;
console.log(arr[2]); // 128
arr[2]=257;
console.log(arr[2]); // 1
arr[2]=-1
console.log(arr[2]); // 255

There is a corresponding Int16Array, Uint32Array and so on.

There are also an 8 bit unsigned clamped version, such that if the ‘ ’

range is exceeded you just get the maximum or minimum:

var arr = new Uint8ClampedArray(5);
arr[2]=+300;
console.log(arr[2]); // 255

The Array object

In most languages an array is a data structure with elements which

are accessed using an index, which is an integer. The Array object

provides something similar to this:

var arr = new Array(3); // make an array with 3 slots
arr[0] = 27; arr[1] = 15; arr[2] = -9; // put values in
for (var index = 0; index < 3; index++)
 console.log(arr[index]); // 27 15 9

But there are differences. An array can contain a mix of data types:

var arr = new Array(3);
arr[0] = 27; arr[1] = "Hello"; arr[2] = false;
for (var index = 0; index < 3; index++)
 console.log(arr[index]);

Array indexes start at 0. Array.length is the number of elements in the

array. But unlike most languages C, Java, C++ an array is not fixed ()

in size.

Page 52 of 62 24/01/21

Introduction to Computer Science JavaScript

Neither are they dense. An array which has had a large index written

to will be extended to that size if required, meaning there may be

elements as some indexes which are undefined:

var arr = new Array(3); // so 0 to 4

arr[5]="Surprise";
for (var index = 0; index < arr.length; index++)
 console.log(index, arr[index]);

outputs

0 undefined
1 undefined
2 undefined
3 undefined
4 undefined
5 Surprise

The Set object

The special aspect of this is that a Set will not contain duplicates. For

example:

var mySet=new Set();
for (var c of "What a fine day!") // iterate through a string
{
mySet.add(c);
}

for (var c of mySet) // get elements of the set
console.log(c);

Output is W h a t <space> f i n e d y !

This differsrom a mathematical set in that it is mutable you cannot (

add or remove elements froma real set and it is ordered as the)

insertion order sets are not ordered .()

A Set is fairly recent and old browsers will not understand.

The March 2021 ECMAScript specification says "Set objects must be

implemented using either hash tables or other mechanisms that, on

average, provide access times that are sublinear on the number of

elements in the collection." So it treats a Set as an ADT, and requires

access time better than O[n] - which is what a hash set would usually

give.

Page 53 of 62 24/01/21

Introduction to Computer Science JavaScript

Map

A Map object is a collection of name-value pairs:

var myMap = new Map();
myMap.set(1,"abc"); // insert 4 key-value pairs
myMap.set(2,"def");
myMap.set(4,"jkl");
myMap.set(3,"ghi");
console.log(myMap.get(2)); // def
console.log(myMap.has(3)); // true - it has a key 3
for (var node of myMap)
console.log(node); // come out in insertion order

The key methods are set, get and has.

We can say

var myMap = new Map();
myMap["test"]="result";
console.log(myMap["test"]); // result

but this just treats myMap as an associative array, which all JavaScript

objects are. get and has would fail unless the data is added by set.

Like Set, Map is fairly new.

The DOM - JavaScript in the web page

JavaScript code usually runs inside a web browser, and is intended for

client-side scripting - making things happen in a web page as (

opposed to server-side scripting such as PHP, running code in a

server before the web page is sent .)

The DOM is the document object model. This is how the things in the

web page can be referred to in JavaScript code.

There are 2 main issues. These are when the code is run, and how it

refers to web page components.

The when is controlled by event-handlers. An event is something that

happens in the web page, such as the user clicking a button. We set

up JavaScript code as an event-handler - code which will be run when

the event happens.

Web page components can be picked out by various techniques. One

uses their html id attribute.

Page 54 of 62 24/01/21

Introduction to Computer Science JavaScript

Responding to a button click

<!DOCTYPE html>

<html>

<head>
<title>The title</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-

scale=1.0">
<script>

'use strict';

function greet() {
alert("You clicked");

}
</script>

</head>

<body>
<button onclick="greet()">Click me</button>

</body>

</html>

The html button element has an onclick attribute. The value of this is

JavaScript code which will be called when the event happens. In this

example

<button onclick="greet()">

means the greet function will be called when the button is clicked.()

That function just calls the alert function, which display a message ()

like:

Page 55 of 62 24/01/21

Introduction to Computer Science JavaScript

html has a set of possible events for each element. For the body, the

onload event occurs after the body has finished loading and being

displayed, and is often used for initialising code.

A basic calculator

To do this:

we do this:

<!DOCTYPE html>

<html>

<head>
<title>The title</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-

scale=1.0">
<script>

'use strict';

function add() {
// get elements
var text1 = document.getElementById("num1");
var text2 = document.getElementById("num2");
// get value, and convert from string to number
var num1 = parseFloat(text1.value);

Page 56 of 62 24/01/21

Introduction to Computer Science JavaScript

var num2 = parseFloat(text2.value);
// add
var result = num1 + num2;
// get output element
var display = document.getElementById("result");
// set value
display.innerHTML = result;

}
</script>

</head>

<body>
<label for="num1">First number:</label>
<input type="text" id="num1" name="num1" value="1.6">
<label for="num2">second number:</label>
<input type="text" id="num2" name="num2" value="2.1">
<button onclick="add()">Add</button>
<label id="result"></label>

</body>

</html>

We set the onclick event handler to be the add function.

This uses getElementById to get references to the 2 input elements.

Then it uses .value to get the text in them, and parseFloat to convert

the text to a number.

Then we add the numbers, get the output label, and set its

innerHTML property to be result.

More JavaScript DOM use

We can also use JavaScript to add and remove web page elements

after the page was been loaded.

We can change any elements properties. This includes its style

attributes, and since this includes the display attribute, whether it is

hidden or displayed.

A good set of notes is here.

Page 57 of 62 24/01/21

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

Introduction to Computer Science JavaScript

Modules

Basic idea

A module is like a script, but global scope is not shared between

modules. Instead variables and functions must be explicitly exported

from and imported into modules.

Need server not file://

We often develop html css and Javascript

loading web pages directly into a browser,

from a local file. In the URL bar the browser

displays:

and the protocol in use is file://. So the browser is simply reading the

html page, and anything else, just like a word processor loads a

document from a disk file.

But JavaScript modules will not allow that. A different protocol

usually http:// is required. The browser sends a request to a server. ()

The server finds the html file, and sends it back to the browser, which

displays it.

A simple way to achieve that is to download,

install and start a local http server, such as

Apache (link . Then if we fetch pages from the)

local loop with IP address 127.0.0.1, we are‘ ’

using our local server, like this:

Basic example

In a JavaScript file testModule.js we have

var x=99;
var y=101;

export {x};

and in a web page:

<html>
 <head>
 <title>The title</title>

Page 58 of 62 24/01/21

Using file protocol

Using http:// protocol

https://httpd.apache.org/download.cgi
../../../
../../../

Introduction to Computer Science JavaScript

 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <script type="module">
 import {x} from "./testModule.js";
 y=4; // error -not found
 </script>
 </head>
 <body>
 <div>stuff</div>
 </body>
</html>

The relative path "./testModule.js" is for the file testModule.js to be in

the same folder as the web page. It could be in a sub-folder, like

"./modules/ testModule.js". Just "testModule.js" does not work. Some

systems use filename extension .mjs not .js for modules, but some

servers like Apache 2.4.18 do not think .js is a script, and fail to ()

load .mjs as being the wrong mime type.

As well as var, we can import const, let and functions:

 /*
 Filename testModule.js JavaScript file
 */

function add(a, b) { return a+b; };

var x=1;
const y=2;

export {add,x,y};

and

 <script type="module">
 import {add,x,y} from "./testModule.js";

 var z=add(x,y);
 console.log(z); // 3
 </script>

Imports and exports are effectively hoisted :‘ ’

 /*
 Filename testModule.js JavaScript file
 */
export {add,x,y};

function add(a, b) { return a+b; };

Page 59 of 62 24/01/21

Introduction to Computer Science JavaScript

var x=1;
const y=2;

and

 <script type="module">
 var z=add(x,y);
 console.log(z); // still works
 import {add,x,y} from "./testModule.js";
 </script>

We cannot re-declare an imported variable:

 <script type="module">
 var x; // Uncaught SyntaxError: Identifier 'x' has already
been declared
 var z=add(x,y);
 console.log(z);
 import {add,x,y} from "./testModule.js";
 </script>

Modules always strict mode

Without saying use strict ; a module is executed in strict mode ‘ ’ –

another advantage.

Use of default

A module can export one only thing as default. Then another ()

module can import the default and re-name it:

/*
 Filename testModule.js JavaScript file
 */
var x=1;
var p=2;
export {p};
export default x;

and

 <script type="module">
 import {default as y} from "./testModule.js";
 import {p} from "./testModule.js";
 console.log(y, p); // 1, 2
 </script>

Page 60 of 62 24/01/21

Introduction to Computer Science JavaScript

Import and export formats

The import and export statements can take various forms, optionally

renaming items:

Import Statement
Form

Filename
imported

Imported
name

Name as
used

Does what?

import v from
"mod";

"mod" "default" "v"
Import and rename a
default export

import * as ns from
"mod";

"mod" "*" "ns"
Import a namespace
object – see below

import {x} from
"mod";

"mod" "x" "x" Import, not re-named

import {x as v} from
"mod";

"mod" "x" "v" Import re-named

import "mod"; No actual import – for side-effects

And

Export Statement Form
What is
exported

File
requested

What is
imported?

Exported
as..

export var v; "v" "v"

export default function
f(){}

"default" "f"

export default function()
{}

"default" "*default*"

export default 42; "default" "*default*"

export {x}; "x" "x"

export {v as x}; "x" "v"

export {x} from "mod"; "x" "mod" "x"

export {v as x} from
"mod";

"x" "mod" "v"

export * from "mod"; "mod" "*"

The export .. from..; enables one module to aggregate exports from

several files into a single exporting file.

Namespaces and importing objects

There are two namespaces in JavaScript global and local to a –

function. So if we have a global variable x in one script, we cannot

have another, different global x in another.

Importing items into an object fixes this. For example:

/*
 Filename testModule.js JavaScript file
 */
var a=1;

Page 61 of 62 24/01/21

Introduction to Computer Science JavaScript

var b=2;
export {a,b};

and

 <script type="module">
 import * as MyModule from "./testModule.js" ;

 console.log(MyModule.a, MyModule.b); // 1, 2
 </script>

Items are imported as fields of an object here, MyModule and ()

referred to as such like MyModule.a . This way we do not have to ()

worry that about a global name in one script clashing with the same

name in another we use the object as a namespace.

Page 62 of 62 24/01/21

	Software tools
	Computers
	Low and high level programming languages
	Compilers and interpreters
	Editors
	IDEs
	JavaScript tool setup
	The DOM
	Security and the sand-box

	Basic ideas
	How to write JavaScript practically
	Using external script files
	Variables
	Assignment statements
	Expressions
	Input and output
	Conditional statements
	= and == and ===
	Loops
	while
	do.. while
	for loop
	for..in
	for of
	break and continue

	Debugging
	Strict mode
	Debugging strategies

	Modularity
	Managing scale - decomposition
	JavaScript functions
	Control flow
	Data flow into the function
	Data flow out

	Pass by value
	Scope
	hoisting
	var let and const

	Standards
	How to get more help
	Primitive types
	Type
	Strict typing
	Primitive types
	Number
	Strings
	Boolean
	BigInt
	Undefined

	Objects and protoypes
	How to make an object
	The object.property dot notation
	What is the point of OOP?
	Methods
	Objects as associative arrays
	Functions are objects
	Patterns of objects – using constructors
	Object property attributes
	The constructor property
	Inheritance
	Constructor prototype property
	Encapsulation
	References
	Static fields
	The built-in objects and the Object object
	Constructor
	The global object

	Function objects and concepts
	Standard function definition and call
	Functions as data objects
	Function expressions
	Anonymous functions
	The Function object

	Classes
	Class
	Methods
	Constructor
	Private fields
	Static
	Class inheritance

	Arrays, maps and other data structures
	Associative arrays
	Typed arrays
	The Array object
	The Set object
	Map

	The DOM - JavaScript in the web page
	Responding to a button click
	A basic calculator
	More JavaScript DOM use

	Modules
	Basic idea
	Need server not file://
	Basic example
	Modules always strict mode
	Use of default
	Import and export formats
	Namespaces and importing objects

